- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bailey-Serres, Julia (1)
-
Braybrook, Siobhan A (1)
-
Dedow, Lauren K (1)
-
Dedow, Lauren K. (1)
-
Oren, Emily (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The β‐glucuronidase gene,uidA(GUS), has remained a favorite reporter gene in plants since its introduction in 1987 for its stability and versatility in a variety of fluorometric, spectrophotometric, and histochemical techniques. One of the most popular uses is as a reporter gene for visualizing endogenous promoter activities within plant tissues. Despite this popularity, specific protocols for minimizing nonrepresentative staining patterns, including false negatives, in challenging tissue types are not common. This became a large issue during our work on dark‐grownArabidopsishypocotyls, and we set out to develop a protocol that would ensure accurate staining in a tissue that is biologically resistant to reagent penetration. Through extensive testing using a variety of constitutive and endogenous promoter::GUS fusion lines, we have developed an optimized GUS staining protocol that combines the use of acetone as a fixative, deliberate physical damage, and proper positive and negative controls to help ensure accurate staining along the hypocotyl while minimizing false negatives. Hopefully, our recommendations will allow for improved staining that more accurately reflects the true activity of cloned endogenous promoters and thus facilitate a more accurate understanding of promoter activity inArabidopsishypocotyls and other hard‐to‐stain tissues.more » « less
-
Searching for a Match: Structure, Function and Application of Sequence-Specific RNA-Binding ProteinsDedow, Lauren K.; Bailey-Serres, Julia (, Plant and Cell Physiology)
An official website of the United States government
